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We characterize the embedding dimension of numerical semigroups in the same manner as additive semigroups 

of integers are characterized in [1].  Moreover, we give a particular characterization of the Frobenius number of numerical 

semigroups with embedding dimension less than or equal to 3.   
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INTRODUCTION 

 
This paper has been motivated by the results 

about the structure of additive semigroups of integers 

(Dimovski, [1]), geometric description of finitely 

generated subsemigroups of the additive semigroup 

ℕ𝑛 (Dimovski and Hadži - Kosta Josifovska, [2]) and 

the description of finitely generated  additive 

subgroups of  ℤ𝑛 (Hadži - Kosta Josifovska and 

Dimovski, [3]). 

The main results stated in these papers are the 

following: 

Theorem 1.1. (Theorem 1.2. in [1]) Let 𝐺 be a semi-

group consisting of positive integers. Let 𝑛 be the 

smallest integer in 𝐺, 𝑑 the greatest common divisor 

of the elements of 𝐺 and 𝑛 = 𝑘𝑑. Let us denote by 𝐴𝑖 

the set of all the elements in 𝐺 whose remаinder after 

division by 𝑛 is 𝑖𝑑, i.e.  

𝐴𝑖 = {𝑎|𝑎 ∈ 𝐺, 𝑎 = 𝑛𝑡 + 𝑖𝑑, 𝑡 ∈ ℕ}. 
Then: 

(i) 𝐺 = 𝐴0 ∪ 𝐴1 ∪ … ∪ 𝐴𝑘−1, the union is disjoint.  

(ii) There exist 1 = 𝑎0, 𝑎1, … , 𝑎𝑘−1, such that  

𝐴𝑖 = {𝑡𝑛 + 𝑖𝑑|𝑡 ≥ 𝑎𝑖}  and 

 𝑎𝑖 + 𝑎𝑗 ≥ {
𝑎𝑖+𝑗 ,             𝑖 + 𝑗 < 𝑘

𝑎𝑖+𝑗−𝑘 − 1, 𝑖 + 𝑗 ≥ 𝑘.
 

(iii) If 𝑚𝑖 = 𝑎𝑖𝑛 + 𝑖𝑑, then {𝑛 = 𝑚0, 𝑚1, … , 𝑚𝑘−1} 

is a set of generators for 𝐺.  

(iv) Let 

𝑏 = 𝑚𝑎𝑥{ 𝑎0, 𝑎1, … , 𝑎𝑘−1}, 

 𝑠 = 𝑚𝑎𝑥{ 𝑖|𝑎𝑖 = 𝑏} and 𝑐 = (𝑏 − 1)𝑘 + 𝑠 + 1.  
Then 

(𝑐 − 1)𝑑 ∉ 𝐺 and  {𝑡𝑑|𝑡 ≥ 𝑐} = 𝐺∗ ⊆ 𝐺.  
(We say that 𝐺∗ is the regular part of 𝐺.) 
Theorem 1.2. (Theorem 2.1. in [1]) Let 𝛼 be a con-

gruence on 𝐺 and 𝛼 ≠ 𝛥𝐺  (𝛥𝐺 is the equality on 𝐺). 

Then there exist 𝑚, 𝑠0, 𝑠1, … , 𝑠𝑘−1 ∈ ℕ such that: 

(i) 𝑎𝛼𝑏 ⇒ 𝑚|𝑎 − 𝑏. 
(ii) (∀𝑡 ∈ ℕ0) [(𝑠𝑖 + 𝑡)𝑛 + 𝑖𝑑]𝛼 is an infinite class, 

and, for every 𝑣 ∈ 𝐴𝑖, 𝑣 < 𝑠𝑖𝑛 + 𝑖𝑑 ⇒ 𝑣𝛼 is a finite 

class for 0 ≤ 𝑖 ≤ 𝑘 − 1. 

(iii) The integers 𝑠𝑖 satisfy the following conditions: 

𝑠𝑖 ≥ 𝑎𝑖, 

𝑠𝑖 + 𝑎𝑗 ≥ {
𝑠𝑖+𝑗,             𝑖 + 𝑗 < 𝑘

𝑠𝑖+𝑗−𝑘 − 1, 𝑖 + 𝑗 ≥ 𝑘.
 

Theorem 1.3. (Theorem 2.1. in [2]) An additive sub-

semigroup 𝐺 of  ℕ𝑛 for 𝑛 > 1 is finitely generated if 

and only if 𝐺 is a subset of 𝐶𝑜𝑛𝑒(𝐴) for some subset 

𝐴 of 𝐺. 
Theorem 1.3. shows the major difference be-

tween the structure of additive subsemigroups of  ℤ𝑛 

for 𝑛 > 1 and additive subsemigroups of ℤ, since any 
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additive subsemigroup of  ℤ  is finitely generated. For 

better understanding of the additive subsemigroups 

of  ℤ𝑛 a good description of the additive subgroups 

of  ℤ𝑛 is given in [3]. 

Four years ago, we came across two papers 

about numerical semigroups (Semigroup Forum, see 

[4],[5]). We found out that they are in fact semi-

groups of nonnegative integers, whose greatest com-

mon divisor of their elements is 1.  

Later, we found out that there are a lot of pa-

pers about numerical semigroups (see [6] - [13]),  dis-

cussing the following notions: multiplicity, conduc-

tor, Frobenius number, embedding dimension, gaps, 

genus, etc. and also theorems analogous to Theorem 

1.1, but not to Theorem 1.2. 

With the notions as in Theorem 1.1, when 𝑑 =
1, 𝐺 ∪ {0} is a numerical semigroup, whose multi-

plicity is 𝑛, conductor is 𝑐, the gaps are all the num-

bers  𝑡𝑛 + 𝑖, for 𝑡 < 𝑎𝑖, the genus is ∑ 𝑎𝑖
𝑛−1
𝑖=0   and  the 

Frobenius number is 𝑐 − 1.  
The notion of embedding dimension is not 

considered in [1]. The aim of this paper is to charac-

terize the embedding dimension of numerical semi-

groups in the same manner as additive semigroups of 

integers are characterized in [1]. Moreover, using this 

characterization, we obtain an explicit form for the 

Frobenius number of numerical semigroups with em-

bedding dimension less than or equal to 3. 

Further on, instead of the term additive semi-

groups of nonnegative integers, we use the term nu-

merical semigroups. Thus, a numerical semigroup 𝐺 

is a proper nonempty subset of  ℕ0, closed under ad-

dition, containing 0 and whose complement is finite, 

i.e. ℕ0\𝐺 is finite.  We say that a set 

𝑆 = {𝑛1, 𝑛2, … , 𝑛𝑡} ⊆ ℕ 

is a set of generators for 𝐺, denoted by 𝐺 =< 𝑆 >, if 

the elements of 𝐺 are linear combinations of 

𝑛1, 𝑛2, . . . , 𝑛𝑡  with nonnegative integer coefficients.  

The condition (iii) in Theorem 1.1. implies that 

every numerical semigroup has a finite set of genera-

tors. Moreover, it has a unique minimal set of gener-

ators ([4]). The cardinality of the minimal set of gen-

erators for 𝐺 is called embedding dimension of 𝐺, de-

noted by 𝑒𝑑(𝐺). The smallest number in the minimal 

set of generators is called multiplicity of 𝐺, denoted 

by 𝑛. The largest number not belonging to a numeri-

cal semigroup 𝐺 is called Frobenius number of 𝐺, de-

noted by 𝐹(𝐺). The set ℕ0\𝐺  is known as the set of 

gaps of 𝐺. Its cardinality is called genus of 𝐺, denoted 

by 𝑔(𝐺).   
In this paper a numerical semigroup 𝐺 will be 

denoted by 𝐺 = [𝑛, 𝐴],  where 𝑛 is the multiplicity of 

𝐺 and 

𝐴 = {1 = 𝑎0, 𝑎1, . . . , 𝑎𝑛−1}, 

where 𝑎0, 𝑎1, . . . , 𝑎𝑛−1 are as in Theorem 1.1. 

 

SOME PRELIMINARY NOTIONS 

AND RESULTS 

 

The addition of integers modulo 𝑛 will be de-

noted by ⨁ and the additive group of integers modulo 

𝑛 will be denoted by (ℤ𝑛, ⨁). If 𝑋 ⊆ ℤ𝑛, the sub-

group of (ℤ𝑛, ⨁) generated by 𝑋 will be denoted by 

< 𝑋 >. The subtraction of integers modulo 𝑛 will be 

denoted by ⊝. The multiplication of integers modulo 

𝑛 will be denoted by ⨀. For 𝑖1, . . . , 𝑖𝑘 ∈ ℤ𝑛 and 𝑘 ∈

ℕ, the integer part [
𝑖1+ ...+𝑖𝑘

𝑛
] will be denoted by 

[𝑛; 𝑖1, . . . , 𝑖𝑘],  i.e. 

[𝑛; 𝑖1, . . . , 𝑖𝑘] = [
𝑖1+ . . . +𝑖𝑘

𝑛
]. 

Lemma 2.4. Let 𝑛, 𝑘, 𝑡 ∈ ℕ, 𝑖𝑢, 𝑗𝑣 ∈ ℤ𝑛 for 1 ≤ 𝑢 ≤
𝑘, 1 ≤ 𝑣 ≤ 𝑡,  𝑗 = 𝑖1⨁. . . ⨁𝑖𝑘 and 𝑠 = 𝑗1⨁. . . ⨁𝑗𝑡 .  
Then: 

(𝑖) [𝑛; 𝑖1, . . . , 𝑖𝑘] =
𝑖1+ . . . +𝑖𝑘 − 𝑖1⨁ . . . ⨁𝑖𝑘

𝑛
; 

(ii) [𝑛; 𝑖1, . . . , 𝑖𝑘 , 𝑗1, . . . , 𝑗𝑡] 
      = [𝑛; 𝑗, 𝑗1, . . . , 𝑗𝑡]  + [𝑛; 𝑖1, . . . , 𝑖𝑘]; 
(iii) [𝑛; 𝑖1, . . . , 𝑖𝑘 , 𝑗1, . . . , 𝑗𝑡] 
       = [𝑛; 𝑗, 𝑠] + [𝑛; 𝑖1, . . . , 𝑖𝑘] + [𝑛; 𝑗1, . . . , 𝑗𝑡]; 
(iv) [𝑛; 𝑖] = 0. 
Proof. (i) Since 𝑗 = 𝑖1⨁. . . ⨁𝑖𝑘 ,  it follows that  

𝑖1+. . . +𝑖𝑘 = 𝑡𝑛 + 𝑗 for some 𝑡 ∈ ℕ. 

Thus,   

[
𝑖1+ . . . +𝑖𝑘

𝑛
] = 𝑡 =

𝑖1+ . . . +𝑖𝑘 − 𝑗

𝑛
 , 

i.e. 

[𝑛; 𝑖1, . . . , 𝑖𝑘] =
𝑖1+ . . . +𝑖𝑘 − 𝑖1⨁. . . ⨁𝑖𝑘

𝑛
. 

(ii) Using (i) we obtain 

[𝑛; 𝑗, 𝑗1, . . . , 𝑗𝑡] + [𝑛; 𝑖1, . . . , 𝑖𝑘] 

             =
𝑗 + 𝑗1+ . . . +𝑗𝑡 − 𝑗⨁𝑠 + 𝑖1+ . . . +𝑖𝑘 − 𝑗

𝑛
 

             =
𝑖1+ . . . +𝑖𝑘 + 𝑗1+ . . . +𝑗𝑡 − 𝑗⨁𝑠

𝑛
 

             = [𝑛; 𝑖1, . . . , 𝑖𝑘 , 𝑗1, . . . , 𝑗𝑡]. 
(iii) Follows from (ii).  

(iv) Follows from (𝑖).■    

Applying Lemma 2.4, the condition (ii) in The-

orem 1.1 can be written as  

𝑎𝑖⨁𝑗 ≤ 𝑎𝑖 + 𝑎𝑗 + [𝑛; 𝑖, 𝑗]. 

Lemma 2.5.  Let 𝐺 = [𝑛; {𝑎0 = 1, 𝑎1, . . . , 𝑎𝑛−1}] be 

a numerical semigroup. Then for arbitrary 𝑖1, . . . , 𝑖𝑘 ∈
ℤ𝑛, 𝑘 ∈ ℕ we have that 

𝑎𝑖1⨁...⨁𝑖𝑘
≤ 𝑎𝑖1

+ . . . +𝑎𝑖𝑘
+ [𝑛; 𝑖1, . . . , 𝑖𝑘]. 

Proof. The proof is by induction on 𝑘. It is easily seen 

that the inequality holds for  𝑘 = 1. Namely, 𝑎𝑖1
=
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𝑎𝑖1
. The condition (ii) in Theorem 1.1 implies that the 

inequality holds for 𝑘 = 2. 
Assume that 

𝑎𝑖1⨁...⨁𝑖𝑘
≤ 𝑎𝑖1

+. . . +𝑎𝑖𝑘
+ [𝑛; 𝑖1, . . . , 𝑖𝑘]. 

The condition (ii) in Theorem 1.1, the inductive hy-

pothesis and Lemma 2.4 imply that  

𝑎𝑖1⨁...⨁𝑖𝑘⨁𝑖𝑘+1
≤ 𝑎𝑖1⨁...⨁𝑖𝑘

+ 𝑎𝑖𝑘+1
 

+[𝑛; 𝑖1⨁. . . ⨁𝑖𝑘, 𝑖𝑘+1] ≤ 𝑎𝑖1
+ . . . +𝑎𝑖𝑘

+ 𝑎𝑖𝑘+1
 

+[𝑛; 𝑖1, . . . , 𝑖𝑘] + [𝑛; 𝑖1⨁. . . ⨁𝑖𝑘 , 𝑖𝑘+1] 
= 𝑎𝑖1

+ . . . +𝑎𝑖𝑘
+ 𝑎𝑖𝑘+1

+ [𝑛; 𝑖1, . . . , 𝑖𝑘 , 𝑖𝑘+1]. ■ 

For a numerical semigroup 

𝐺 = [𝑛; {𝑎0 = 1, 𝑎1, . . . , 𝑎𝑛−1}] 
we define the following sets: 

𝑅(𝐺) = {𝑖⨁𝑗|𝑖, 𝑗 ∈ ℤ𝑛, 𝑎𝑖⨁𝑗 = 𝑎𝑖 + 𝑎𝑗 + [𝑛; 𝑖, 𝑗]} 

and 𝑆(𝐺) = ℤ𝑛\𝑅(𝐺). 
Lemma 2.6. 0 ∈ 𝑆(𝐺). 
Proof. Since 𝑎0, 𝑎1, . . . , 𝑎𝑛−1 ∈ ℕ, it follows that  

𝑎0 = 1 < 𝑎𝑖 + 𝑎𝑗 + [𝑛; 𝑖, 𝑗] for all 𝑖, 𝑗 ∈ ℤ𝑛. ■ 

 

EMBEDING DIMENSION 

OF NUMERICAL SEMIGROUPS 
 

We will give a characterization of the embed-

ding dimension of numerical semigroups in the same 

manner as a characterization of the additive semi-

groups of integers was given in [1].  

Let 𝐺 = [𝑛; {𝑎0 = 1, 𝑎1, . . . , 𝑎𝑛−1}] be a nu-

merical semigroup, 𝐵0 = {𝑎𝑖𝑛 + 𝑖|𝑖 ∈ ℤ𝑛}  and  

ℳ0 = {𝑎𝑖𝑛 + 𝑖|𝑖 ∈ 𝑅(𝐺)}. 
From the definition of 𝐵0 and ℳ0 it follows that  

|𝐵0\ℳ0| = |ℤ𝑛\𝑅(𝐺)| = |𝑆(𝐺)|. 
Theorem 3.1. The set 𝐵0\ℳ0 is the minimal set of 

generators for 𝐺. Thus, 

𝑒𝑑(𝐺) = |𝐵0\ℳ0| = |𝑆(𝐺)|. 
Proof. We will consider the following four steps. 

Step 1. If 𝑅(𝐺) = ∅ then ℳ0 = ∅.  We will show that 

𝐵0 is the minimal set of generators for 𝐺 by contra-

diction.   

Assume that, for some 𝑖 ∈ ℤ𝑛\{0}, 

𝑎𝑖𝑛 + 𝑖 = 𝑎𝑖1
𝑛 + 𝑖1 + ⋯ + 𝑎𝑖𝑘

𝑛 + 𝑖𝑘, 

where 𝑘 ≥ 2 and 𝑎𝑖𝑠
𝑛 + 𝑖𝑠 ∈ 𝐵0\{𝑎𝑖𝑛 + 𝑖} for each 

𝑠 ∈ {1, . . . , 𝑘}. Then 

𝑎𝑖𝑛 + 𝑖 = (𝑎𝑖1
+ . . . +𝑎𝑖𝑘

)𝑛 + 𝑖1+ . . . +𝑖𝑘 

= (𝑎𝑖1
+ . . . +𝑎𝑖𝑘

)𝑛 + [𝑛; 𝑖1, . . . , 𝑖𝑘]𝑛 + 𝑖1⨁. . . ⨁𝑖𝑘 

= (𝑎𝑖1
+ . . . +𝑎𝑖𝑘

+ [𝑛; 𝑖1, . . . , 𝑖𝑘])𝑛 + 𝑖1⨁. . . ⨁𝑖𝑘 . 

This implies that 𝑖 = 𝑖1⨁. . . ⨁𝑖𝑘 and  

𝑎𝑖 = 𝑎𝑖1⨁...⨁𝑖𝑘
= 𝑎𝑖1

+ . . . +𝑎𝑖𝑘
+ [𝑛; 𝑖1, . . . , 𝑖𝑘]. 

Let 𝑗 = 𝑖2⨁. . . ⨁𝑖𝑘 and assume that  

𝑎𝑖 = 𝑎𝑖1⨁𝑗 < 𝑎𝑖1
+ 𝑎𝑗 + [𝑛; 𝑖1, 𝑗]. 

By Lemma 2.5 we have that   

𝑎𝑖1
+ . . . +𝑎𝑖𝑘

+ [𝑛; 𝑖1, . . . , 𝑖𝑘] = 𝑎𝑖1⨁...⨁𝑖𝑘
 

≤ 𝑎𝑖1
+ . . . +𝑎𝑖𝑘

+ [𝑛; 𝑖1, . . . , 𝑖𝑘]. 

Next, the assumption and Lemma 2.5 imply that: 

𝑎𝑖1
+ . . . +𝑎𝑖𝑘

+ [𝑛; 𝑖1, . . . , 𝑖𝑘] < 𝑎𝑖1
+ 𝑎𝑗 + [𝑛; 𝑖1, 𝑗] 

≤ 𝑎𝑖1
+ 𝑎𝑖2

. . . +𝑎𝑖𝑘
+ [𝑛; 𝑖2, . . . , 𝑖𝑘] + [𝑛; 𝑖1, 𝑗]. 

This implies that  
[𝑛; 𝑖1, . . . , 𝑖𝑘] < [𝑛; 𝑖2, . . . , 𝑖𝑘] + [𝑛; 𝑖1, 𝑗], 

contrary to Lemma 2.4 (ii).  

Hence, 𝑎𝑖 = 𝑎𝑖1
+ 𝑎𝑗 + [𝑛; 𝑖1, 𝑗]. So 𝑖 ∈ 𝑅(𝐺), con-

trary to 𝑅(𝐺) = ∅. Therefore, 𝐵0 is the minimal set 

of generators for 𝐺. 
Step 2. Let 𝑅(𝐺) ≠ ∅ and 𝑥1 be the largest element 

in 𝐵0 such that  𝑥1 = 𝑎𝑡1
𝑛 + 𝑡1 and 𝑡1 ∈ 𝑅(𝐺). This 

implies that 𝑡1 = 𝑖⨁𝑗  for some 𝑖, 𝑗 ∈ ℤ𝑛 and  

𝑎𝑖⨁𝑗 = 𝑎𝑖 + 𝑎𝑗 + [𝑛; 𝑖, 𝑗]. 

Thus,  

𝑥1 = (𝑎𝑖 + 𝑎𝑗 + [𝑛; 𝑖, 𝑗])𝑛 + 𝑖⨁𝑗 

= 𝑎𝑖𝑛 + 𝑎𝑗𝑛 + [𝑛; 𝑖, 𝑗]𝑛 + 𝑖⨁𝑗 

= 𝑎𝑖𝑛 + 𝑎𝑗𝑛 + 𝑖 + 𝑗 = 𝑢 + 𝑣, 

where 𝑢 = 𝑎𝑖𝑛 + 𝑖 and 𝑣 = 𝑎𝑗𝑛 + 𝑗. Since 𝑢, 𝑣 > 0, 

it follows that 𝑥1 ≠ 𝑢 and 𝑥1 ≠ 𝑣. Therefore,  

𝑥1 ∈ < 𝐵0\{𝑥1} >, i.e. 

< 𝐵1 > = < 𝐵0 >= 𝐺, where 𝐵1 = 𝐵0\{𝑥1}. 
If 𝑅(𝐺)\{𝑡1} = ∅, the same discussion as in Step 1, 

implies that 𝐵1 is the minimal set of generators for 𝐺. 
Step 3. We continue by induction to obtain the ele-

ments 

𝑡1, . . . , 𝑡𝑟 ∈ 𝑅(𝐺), 𝑥1 > 𝑥2 >. . . > 𝑥𝑟 ∈ 𝐵0 

and  𝐵𝑟 ⊂ 𝐵𝑟−1 ⊂ . . . ⊂ 𝐵1 ⊂ 𝐵0, such that 

𝑥𝑠 = 𝑎𝑡𝑠
𝑛 + 𝑡𝑠 and 𝐵𝑠 = 𝐵𝑠−1\{𝑥𝑠}, 

for every 𝑠 ∈ {1, . . . , 𝑟}. 
If 𝑅(𝐺)\{𝑡1, . . . , 𝑡𝑟} = ∅, the same discussion 

as in Step 1, implies that 𝐵𝑟 is the minimal set of gen-

erators for 𝐺. If  𝑅(𝐺)\{𝑡1, . . . , 𝑡𝑟} ≠ ∅, let 𝑥𝑟+1 be 

the largest element in 𝐵𝑟 such that  𝑥𝑟+1 = 𝑎𝑡𝑛 + 𝑡 

for some 𝑡 ∈ 𝑅(𝐺)\{𝑡1, . . . , 𝑡𝑟}. This implies that 

𝑥𝑟 > 𝑥𝑟+1 and 𝑎𝑡 = 𝑎𝑖⨁𝑗 = 𝑎𝑖 + 𝑎𝑗 + [𝑛; 𝑖, 𝑗] for 

some 𝑖, 𝑗 ∈ ℤ𝑛. 

Thus, 

𝑥𝑟+1 = (𝑎𝑖 + 𝑎𝑗 + [𝑛; 𝑖, 𝑗])𝑛 + 𝑖⨁𝑗 

= 𝑎𝑖𝑛 + 𝑎𝑗𝑛 + [𝑛; 𝑖, 𝑗]𝑛 + 𝑖⨁𝑗 

= 𝑎𝑖𝑛 + 𝑎𝑗𝑛 + 𝑖 + 𝑗 = 𝑢 + 𝑣, 

where 𝑢 = 𝑎𝑖𝑛 + 𝑖 and 𝑣 = 𝑎𝑗𝑛 + 𝑗. From 𝑢, 𝑣 > 0, 

we have that 𝑥𝑟+1 ≠ 𝑢 and 𝑥𝑟+1 ≠ 𝑣. 
Since 𝑥1 > 𝑥2 >. . . > 𝑥𝑟 > 𝑥𝑟+1, it follows 

that 𝑢, 𝑣 ∈ 𝐵0\{𝑥1, . . . , 𝑥𝑟+1}, i.e. 

𝑥𝑟+1 ∈ < 𝐵𝑟+1 > = < 𝐵𝑟\{𝑥𝑟+1} >. 
Hence, 

< 𝐵𝑟+1 > = < 𝐵𝑟 > =. . . = < 𝐵1 > = < 𝐵0 > = 𝐺. 
Step 4. This procedure has to stop, since 𝑅(𝐺) has a 

finite number of elements, i.e. there is some 𝑡𝑚 such 

that 𝑅(𝐺)\{𝑡1, . . . , 𝑡𝑚} = ∅.  The same discussion as 

in Step 1 implies that 𝐵𝑚 is the minimal set of gener-

ators for 𝐺. Since  
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|𝐵𝑚| = |𝐵0\{𝑥1, . . . , 𝑥𝑚}| = |𝐵0\ℳ0| = |𝑆(𝐺)|, 
we have 

𝑒𝑑(𝐺) = |𝐵0\ℳ0| = |𝑆(𝐺)|. ■ 

Let 𝑛 be a given positive integer. Let 𝑇 ⊆
ℤ𝑛\{0} be a generating set for ℤ𝑛, i.e.  < 𝑇 > = ℤ𝑛 

and let 𝐵(𝑇) = {𝑏𝑠|𝑠 ∈ 𝑇} ⊆ ℕ satisfies the follow-

ing condition: 

if 𝑡 ∈ 𝑇 and 𝑡 = 𝑖1⨁. . . ⨁𝑖𝑟 for 𝑖1, . . . , 𝑖𝑟 ∈ 𝑇\{𝑡},    

then 𝑏𝑡 < 𝑏𝑖1
+. . . +𝑏𝑖𝑟

+ [𝑛; 𝑖1, . . . , 𝑖𝑟].   (1) 

We define a set 𝑃 = {𝑎0, 𝑎1, . . . , 𝑎𝑛−1} as follows: 

(i) 𝑎0 = 1; 

(ii) If  𝑖 ∈ 𝑇, then 𝑎𝑖 = 𝑏𝑖; 

(iii) If  𝑖 ∉ 𝑇, then   

𝑎𝑖 = 𝑚𝑖𝑛{ 𝑏𝑖1
+ . . . +𝑏𝑖𝑟

+ [𝑛; 𝑖1, . . . , 𝑖𝑟]|𝑖 = 

𝑖1⨁. . . ⨁𝑖𝑟, 𝑖1, . . . , 𝑖𝑟 ∈ 𝑇}. 
By the definition of the set 𝑃 it follows that for 

each 𝑖 ∈ ℤ𝑛\{0}, there is 𝑡 ∈ ℕ and some 𝑖1, . . . , 𝑖𝑡 ∈
𝑇 such that  

𝑎𝑖 = 𝑏𝑖1
+ . . . +𝑏𝑖𝑡

+ [𝑛; 𝑖1, . . . , 𝑖𝑡], 

                   where   𝑖 = 𝑖1⨁. . . ⨁𝑖𝑡 .                    (2) 

Theorem 3.2. With the above notions, we have: 

(i) 𝐺 = [𝑛; 𝑃] is a numerical semigroup, denoted by 

[𝑛; 𝑇; 𝐵(𝑇)]. 
(ii) 𝑅([𝑛; 𝑇; 𝐵(𝑇)]) = ℤ𝑛\(𝑇 ∪ {0}). 
(iii) 𝑒𝑑([𝑛; 𝑇; 𝐵(𝑇)]) = |𝑇| + 1. 
Proof.  

(i) By (2) it follows that  

𝑎𝑖 = 𝑏𝑖1
+ . . . +𝑏𝑖𝑟

+ [𝑛; 𝑖1, . . . , 𝑖𝑟], 

𝑎𝑗 = 𝑏𝑗1
+ . . . +𝑏𝑗𝑡

+ [𝑛; 𝑗1, . . . , 𝑗𝑡], 

where 𝑖 = 𝑖1⨁. . . ⨁𝑖𝑟  and   𝑗 = 𝑗1⨁. . . ⨁𝑗𝑡 for some 

𝑟, 𝑡 ∈ ℕ. 
If 𝑖⨁𝑗 ∈ 𝑇 then   

𝑎𝑖⨁𝑗 = 𝑏𝑖⨁𝑗 < 𝑏𝑖1
+ . . . +𝑏𝑖𝑟

+ 𝑏𝑗1
+ . . . +𝑏𝑗𝑡

 

+[𝑛; 𝑖1, . . . , 𝑖𝑟, 𝑗1, . . . , 𝑗𝑡], 
where 𝑖⨁𝑗 = 𝑖1⨁. . . ⨁𝑖𝑟⨁𝑗1⨁. . . ⨁𝑗𝑡. 
If 𝑖⨁𝑗 ∉ 𝑇 then 

𝑎𝑖⨁𝑗 = 𝑚𝑖𝑛{ 𝑏𝑖1
+ . . . +𝑏𝑖𝑘

+ [𝑛; 𝑖1, . . . , 𝑖𝑘]|𝑖⨁𝑗 

= 𝑖1⨁. . . ⨁𝑖𝑘 , 𝑖1, . . . , 𝑖𝑘 ∈ 𝑇} 
≤ 𝑏𝑖1

+ . . . +𝑏𝑖𝑟
+ 𝑏𝑗1

+ . . . +𝑏𝑗𝑡
 

+[𝑛; 𝑖1, . . . , 𝑖𝑟, 𝑗1, . . . , 𝑗𝑡]. 
In both cases, we have 

𝑎𝑖⨁𝑗 ≤ 𝑏𝑖1
+ . . . +𝑏𝑖𝑟

+ 𝑏𝑗1
+ . . . +𝑏𝑗𝑡

 

+[𝑛; 𝑖1, . . . , 𝑖𝑟 , 𝑗1, . . . , 𝑗𝑡] 
= 𝑎𝑖 − [𝑛; 𝑖1, . . . , 𝑖𝑟] + 𝑎𝑗 − [𝑛; 𝑗1, . . . , 𝑗𝑡] 

+[𝑛; 𝑖1, . . . , 𝑖𝑟 , 𝑗1, . . . , 𝑗𝑡] 
= 𝑎𝑖 + 𝑎𝑗 − [𝑛; 𝑖1, . . . , 𝑖𝑟] + [𝑛; 𝑖1, . . . , 𝑖𝑟, 𝑗] 

= 𝑎𝑖 + 𝑎𝑗 + [𝑛; 𝑖, 𝑗], 

i.e. 

𝑎𝑖⨁𝑗 ≤ 𝑎𝑖 + 𝑎𝑗 + [𝑛; 𝑖, 𝑗]. 

Thus, 𝑎0, 𝑎1, . . . , 𝑎𝑛−1 satisfy the condition (ii) in 

Theorem 1.1 and 𝐺 = [𝑛, 𝑃] is a numerical semi-

group. 

(𝑖𝑖) Let 𝑡 ∈ 𝑅(𝐺). Then 𝑡 = 𝑖⨁𝑗 and 𝑎𝑡 = 𝑎𝑖 + 𝑎𝑗 +

[𝑛; 𝑖, 𝑗],  where  

𝑎𝑖 = 𝑏𝑖1
+ . . . +𝑏𝑖𝑟

+ [𝑛; 𝑖1, . . . , 𝑖𝑟], 

𝑎𝑗 = 𝑏𝑗1
+ . . . +𝑏𝑗𝑘

+ [𝑛; 𝑗1, . . . , 𝑗𝑘],  

𝑖 = 𝑖1⨁. . . ⨁𝑖𝑟 and 𝑗 = 𝑗1⨁. . . ⨁𝑗𝑘, 

for 𝑟, 𝑘 ∈ ℕ.   
If 𝑡 ∈ 𝑇 then 

𝑏𝑖1
+ . . . +𝑏𝑖𝑟

+ 𝑏𝑗1
+ . . . +𝑏𝑗𝑘

 

+[𝑛; 𝑖1, . . . , 𝑖𝑟, 𝑗1, . . . , 𝑗𝑘] 
> 𝑎𝑖⨁𝑗 = 𝑎𝑡 = 𝑎𝑖 + 𝑎𝑗 + [𝑛; 𝑖, 𝑗] 

= 𝑏𝑖1
+ . . . +𝑏𝑖𝑟

+ [𝑛; 𝑖1, . . . , 𝑖𝑟] 

+𝑏𝑗1
+ . . . +𝑏𝑗𝑘

+ [𝑛; 𝑗1, . . . , 𝑗𝑘] + [𝑛; 𝑖, 𝑗], 

which implies that  

[𝑛; 𝑖1, . . . , 𝑖𝑟] + [𝑛; 𝑗1, . . . , 𝑗𝑘] 
+[𝑛; 𝑖, 𝑗] < [𝑛; 𝑖1, . . . , 𝑖𝑟, 𝑗1, . . . , 𝑗𝑘], 

contrary to Lemma 2.4. So 𝑡 ∉ 𝑇. This shows that 

𝑅(𝐺) ⊆ ℤ𝑛\𝑇. 
For 𝑡 = 0,  

𝑎0 = 1 < 𝑎𝑖 + 𝑎𝑗 + [𝑛; 𝑖, 𝑗] for all 𝑖, 𝑗 ∈ ℤ𝑛, i.e. 

𝑡 ∈ ℤ𝑛\(𝑇 ∪ {0}). Hence, 𝑅(𝐺) ⊆ ℤ𝑛\(𝑇 ∪ {0}). 

Let 𝑡 ∈ ℤ𝑛\(𝑇 ∪ {0}). Since 𝑡 ∉ 𝑇 ∪ {0}, it follows 

that there are 𝑖1, . . . , 𝑖𝑟 ∈ 𝑇 and 𝑟 ∈ ℕ  such that 

𝑡 = 𝑖1⨁. . . ⨁𝑖𝑟  
and 

𝑎𝑡 = 𝑎𝑖1⨁...⨁𝑖𝑟
= 𝑏𝑖1

+ . . . +𝑏𝑖𝑟
+ [𝑛; 𝑖1, . . . , 𝑖𝑟] 

= 𝑎𝑖1
+ . . . +𝑎𝑖𝑟

+ [𝑛; 𝑖1, . . . , 𝑖𝑟]. 

Let 𝑗 = 𝑖2⨁. . . ⨁𝑖𝑟 . Then  

𝑎𝑡 = 𝑎𝑖1
+ 𝑎𝑖2

+ . . . +𝑎𝑖𝑟
+ [𝑛; 𝑖1, 𝑗] + [𝑛; 𝑖2, . . . , 𝑖𝑟] 

≥ 𝑎𝑖1
+ 𝑎𝑗 + [𝑛; 𝑖1, 𝑗] = 𝑎𝑖1⨁𝑗 = 𝑎𝑡 . 

Hence 𝑎𝑡 = 𝑎𝑖1
+ 𝑎𝑗 + [𝑛; 𝑖1, 𝑗], which implies that 

𝑡 ∈ 𝑅(𝐺). This completes the proof, i.e. 

𝑅(𝐺) = ℤ𝑛\(𝑇 ∪ {0}). 

(iii) Follows from (i) and (ii).■ 

By all these results we obtain the following theorem: 

Theorem 3.3. A numerical semigroup 𝐺 has 

𝑒𝑑(𝐺) = 𝑑 iff 𝐺 = [𝑛; 𝑇; 𝐵(𝑇)] for some: positive 

integer 𝑛; 𝑇 ⊆ ℤ𝑛\{0} such that < 𝑇 > = ℤ𝑛 and 
|𝑇| = 𝑑 − 1; and some 𝐵(𝑇) ⊆ ℕ, that satisfies the 

condition (1). 

 

FROBENIUS NUMBER 

OFNUMERICAL SEMIGROUPS 
 

The Frobenius number 𝐹(𝐺) of a numerical 

semigroup 𝐺 is the largest integer not belonging to 𝐺. 
In fact, 𝐹(𝐺) is the largest integer  such that the linear 

equation 𝑚1𝑥1+. . . +𝑚𝑟𝑥𝑟 = 𝐹(𝐺) does not have 

any non-negative integer solution, where 

{𝑚1, . . . , 𝑚𝑟} 

is the minimal set of generators for 𝐺.   
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It is shown that if 𝐺 =< 𝑚1, 𝑚2 > and 

𝐺𝐶𝐷(𝑚1, 𝑚2) = 1, then 𝐹(𝐺) = 𝑚1𝑚2 − 𝑚1 − 𝑚2 

([6]). 

The question of finding a general formula for 

the Frobenius number, in terms of the minimal set of 

generators for 𝐺 when 𝑒𝑑(𝐺) ≥ 3, turned out to be 

much more difficult to answer.  

F. Curtis has proved in [10] that Frobenius 

number cannot be given by “closed” formulas of a 

certain type when 𝑒𝑑(𝐺) ≥ 3.   
Several authors have developed algorithms 

that compute the Frobenius number of numerical 

semigroups with embedding dimension 3. The first is 

Johnson ([15]). Rødseth developed an algorithm us-

ing continued fractions ([14]). The algorithm by Da-

vison ([16]) is the fastest known algorithm for com-

puting the Frobenius number for 𝑒𝑑(𝐺) = 3, accord-

ing to Beihoffer, Nijenhuis and Wagon ([17]). 

Recently, an explicit general formula for com-

puting 𝐹(𝐺) for 𝑒𝑑(𝐺) = 3, was given by Denham 

in [18] and Tripathi in [19].  

When 𝑒𝑑(𝐺) > 3, the Frobenius number has 

been exactly determined only for few special cases 

([14]).  

A variety of algorithms for computing the Fro-

benius number for 𝑒𝑑(𝐺) > 3, as well as upper 

bounds and lower bounds, are quite well elaborated 

in [14].  

By Theorem 1.1, the Frobenius number of 𝐺 =
[𝑛, 𝐴] is  

𝐹(𝐺) = 𝑎𝑛 + 𝑘 − 𝑛,  

where 

𝑎 = 𝑚𝑎𝑥{ 𝑎0, . . . , 𝑎𝑛−1} and 𝑘 = 𝑚𝑎𝑥{ 𝑖|𝑎𝑖 = 𝑎}. 
This is the simplest general form for the Frobenius 

number. 

In continuation, we give a particular character-

ization of the Frobenius number of numerical semi-

groups with embedding dimension less than or equal 

to 3, in terms of its minimal set of generators.  

Let 𝐺 = [𝑛; 𝑇; 𝐵(𝑇)], 𝑇 = {𝑗1, . . . , 𝑗𝑘},  
𝒜 = {𝑎𝑠𝑛 + 𝑠|𝑠 ∈ ℤ𝑛}  and 

ℳ = {𝑏𝑗𝑟
𝑛 + 𝑗𝑟|𝑟 = 1, . . . , 𝑘}, i.e. 

ℳ = {𝑚1, . . . , 𝑚𝑘}. 

We define 𝜑: ℤ𝑘 → ℤ𝑛 by 

𝜑(𝑧1, . . . , 𝑧𝑘) = 𝑡  iff  ∑ 𝑧𝑠𝑚𝑠
𝑘
𝑠=1 ≡ 𝑡 (𝑚𝑜𝑑 𝑛). 

It is easy to check that the map 𝜑 is a homomorphism 

and 𝐻 = 𝑘𝑒𝑟 𝜑 is an additive subgroup of  ℤ𝑘 of rank 

𝑘. Let 𝐵0 = 𝐻 ∩ (ℕ0)𝑘, 𝐵 = 𝐵0\{(0, . . . ,0)},  𝐷 =
𝐵 + (ℕ0)𝑘 and 𝐶 = (ℕ0)𝑘\𝐷. (We say that 𝐶 is the 

carrier of 𝐺). 

Theorem 4.1. For each 𝑟 ∈ 𝒜\{0},  

𝑟 = 𝑝1𝑚1+ . . . +𝑝𝑘𝑚𝑘 for some (𝑝1, . . . , 𝑝𝑘) ∈ 𝐶. 

Proof. Assume contrary that for some 𝑟 ∈ 𝒜\{0},  

𝑟 = 𝑝1𝑚1+ . . . +𝑝𝑘𝑚𝑘 and (𝑝1, . . . , 𝑝𝑘) ∉ 𝐶. Then 

(𝑝1, . . . , 𝑝𝑘) ∈ 𝐵 + (ℕ0)𝑘,  i.e. 

(𝑝1, . . . , 𝑝𝑘) = (𝑟1, . . . , 𝑟𝑘) + (𝑞1, . . . , 𝑞𝑘) 
= (𝑟1 + 𝑞1, . . . , 𝑟𝑘 + 𝑞𝑘), 

where  (𝑟1, . . . , 𝑟𝑘) ∈ 𝐵 and (𝑞1, . . . , 𝑞𝑘) ∈ (ℕ0)𝑘.  
Since (𝑟1, . . . , 𝑟𝑘) ∈ 𝐵 it follows that  

𝜑(𝑟1, . . . , 𝑟𝑘) = 0. 

This implies that 𝜑(𝑝1, . . . , 𝑝𝑘) = 𝜑(𝑞1, . . . , 𝑞𝑘),  and 

the obvious inequality 

𝑝1𝑚1+ . . . +𝑝𝑘𝑚𝑘 > 𝑞1𝑚1+ . . . +𝑞𝑘𝑚𝑘 

contradicts the fact that 𝑟 ∈ 𝒜\{0}. ■  

If 𝑒𝑑(𝐺) = 1 then 𝑇 = ∅ and  𝐺 = < 𝑛 >. So, 

𝑛 = 1 and the Frobenius number of 𝐺 does not exist. 

Let 𝑒𝑑(𝐺) = 2, i.e. 𝐺 = [𝑛; {𝑖}; {𝑏𝑖}], where 

𝐺𝐶𝐷(𝑛, 𝑖) = 1,  𝑥 = 𝑏𝑖𝑛 + 𝑖,  ℳ = {𝑥} and  

𝒜 = {𝑎𝑠𝑛 + 𝑠|𝑠 ∈ ℤ𝑛} = {𝑚𝑠|𝑠 ∈ ℤ𝑛}.  
The definition of 𝐺 implies that 𝑚𝑡⨀𝑖 = 𝑡𝑥,  so the 

Frobenius number of 𝐺 = [𝑛; {𝑖}; {𝑏𝑖}] is   

𝐹(𝐺) = (𝑛 − 1)𝑥 − 𝑛 = 𝑛𝑥 − 𝑥 − 𝑛. 

Let 𝑒𝑑(𝐺) = 3, i.e. 𝐺 = [𝑛; {𝑖, 𝑗}; {𝑏𝑖, 𝑏𝑗}], 

where  

𝐺𝐶𝐷(𝑛, 𝑖) = 𝐺𝐶𝐷(𝑛, 𝑗) = 1, 𝑥 = 𝑏𝑖𝑛 + 𝑖, 
𝑦 = 𝑏𝑗𝑛 + 𝑗, ℳ = {𝑥, 𝑦} and 

𝒜 = {𝑎𝑠𝑛 + 𝑠|𝑠 ∈ ℤ𝑛} = {𝑚𝑠|𝑠 ∈ ℤ𝑛}. 
Тhe definition of 𝐺 implies that  

𝑚𝑠 = 𝑚𝑖𝑛{ 𝑝𝑥 + 𝑞𝑦|𝑝⨀𝑖⨁𝑞⨀𝑗 = 𝑠}. 
If 𝑝′⨀𝑖 = 𝑞′⨀𝑗 and 𝑝′𝑥 > 𝑞′𝑦,  then 

𝑝′⨀𝑖⨁𝑞⨀𝑗 = 𝑞′⨀𝑗⨁𝑞⨀𝑗 = (𝑞′ + 𝑞)⨀𝑗 

and 𝑝′𝑥 + 𝑞𝑦 > (𝑞 + 𝑞′)𝑦. 
Similarly, for 𝑝′⨀𝑖 = 𝑞′⨀𝑗 and 𝑞′𝑦 > 𝑝′𝑥,   

𝑞′⨀𝑗⨁𝑝⨀𝑖 = 𝑝′⨀𝑖⨁𝑝⨀𝑖 = (𝑝′ + 𝑝)⨀𝑖 
and 𝑞′𝑦 + 𝑝𝑥 > (𝑝 + 𝑝′)𝑥. 

If 𝑝⨀𝑖 = 𝑞⨀𝑗, then 𝜑(𝑝, −𝑞) = 0, for the ho-

momorphism  𝜑: ℤ2 → ℤ𝑛, i.e. (𝑝, −𝑞) ∈ 𝐻. In order 

to find  𝑚𝑖𝑛{ 𝑝𝑥 + 𝑞𝑦}, the above discussion shows 

that we have to have a good control on the pairs 
(𝑝, −𝑞) ∈ 𝐻 for 𝑝, 𝑞 ∈ ℤ𝑛. 

We say that a pair (𝑝, −𝑞) ∈ 𝐻, for 𝑝, 𝑞 ∈ ℤ𝑛, 

is a minimal pair if there is no (𝑝′, −𝑞′) ∈ 𝐻, for  

𝑝′, 𝑞′ ∈ ℤ𝑛, such that 𝑝′ < 𝑝 and 𝑞′ < 𝑞. We say that 

two minimal pairs (𝑝, −𝑞), (𝑢, −𝑣) are consecutive 

if 𝑝 > 𝑢,  𝑞 < 𝑣  and  

0 < 𝑐 < 𝑝, 0 < 𝑑 < 𝑣 ⇒  (𝑐, −𝑑) ∉ 𝐻. 
We will prove the following lemma.  

Lemma 4.2. Let (𝑝, −𝑞), (𝑢, −𝑣) be two minimal 

consecutive pairs. Then 𝑝𝑣 − 𝑞𝑢 = 𝑛 and 

 {𝑠⨀𝑖⨁𝑟⨀𝑗|(𝑠, 𝑟) ∈ 𝐴𝐿 ∪ 𝐴𝑅} = ℤ𝑛, 

where 

𝐴𝐿 = {(𝑠, 𝑟)|0 ≤ 𝑠 < 𝑝, 0 ≤ 𝑟 < 𝑣 − 𝑞}, 

𝐴𝑅 = {(𝑠, 𝑟)|0 ≤ 𝑠 < 𝑝 − 𝑢, 0 ≤ 𝑟 < 𝑣}. 
Proof.  Let  

𝐾 = {𝑠⨀𝑖⨁𝑟⨀𝑗|(𝑠, 𝑟) ∈ 𝐴𝐿 ∪ 𝐴𝑅}. 
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The proof is in three steps. 

Step 1. The assumption 𝐺𝐶𝐷(𝑛, 𝑖) = 𝐺𝐶𝐷(𝑛, 𝑗) = 1 

implies that for every 𝑡 ∈ ℤ𝑛, 𝑡 = 𝛼⨀𝑖⨁𝛽⨀𝑗 for 

some (𝛼, 𝛽) ∈ ℕ × ℕ. If (𝛼, 𝛽) ∈ 𝐴𝐿 ∪ 𝐴𝑅, then 𝑡 ∈
𝐾. If (𝛼, 𝛽) ∉ 𝐴𝐿 ∪ 𝐴𝑅, then we have to consider 4 

cases: 𝛼 < 𝑝, 𝛽 < 𝑣; 𝛼 ≥ 𝑝, 𝛽 < 𝑣; 𝛼 < 𝑝, 𝛽 ≥ 𝑣; 

and 𝛼 ≥ 𝑝, 𝛽 ≥ 𝑣. 

Case 1. 𝛼 < 𝑝, 𝛽 < 𝑣 and (𝛼, 𝛽) ∉ 𝐴𝐿 ∪ 𝐴𝑅.   

Since (𝛼, 𝛽) ∉ 𝐴𝐿, it follows that 𝑣 − 𝑞 ≤ 𝛽 <
𝑣, and since (𝛼, 𝛽) ∉ 𝐴𝑅,  it follows that 𝑝 − 𝑢 ≤
𝛼 < 𝑝. 

Next, the assumptions 𝑝⨀𝑖 = 𝑞⨀𝑗 and 𝑢⨀𝑖 = 𝑣⨀𝑗 

imply that  

(𝛼 ⊝ (𝑝 ⊝ 𝑢))⨀𝑖⨁(𝛽 ⊝ (𝑣 ⊝ 𝑞))⨀𝑗 

= (𝛼 − (𝑝 − 𝑢))⨀𝑖⨁(𝛽 − (𝑣 − 𝑞))⨀𝑗 

= 𝛼⨀𝑖 ⊝ 𝑝⨀𝑖⨁𝑢⨀𝑖⨁𝛽⨀𝑗 ⊝ 𝑣⨀𝑗⨁𝑞⨀𝑗 

= 𝛼⨀𝑖⨁𝛽⨀𝑗 = 𝑡 = 𝛼′⨀𝑖⨁𝛽′⨀𝑗, 
where  

𝛼′ = (𝛼 − (𝑝 − 𝑢)) < 𝛼 < 𝑝  and 

𝛽′ = (𝛽 − (𝑣 − 𝑞)) < 𝛽 < 𝑣. 

If (𝛼′, 𝛽′) ∈ 𝐴𝐿 ∪ 𝐴𝑅, then 𝑡 ∈ 𝐾.  If (𝛼′, 𝛽′) ∉
𝐴𝐿 ∪ 𝐴𝑅, then we repeat the discussion above. After 

finitely many repetitions we will obtain that 𝑡 ∈ 𝐾.   
Case 2. 𝛼 ≥ 𝑝, 𝛽 < 𝑣.  

If 𝑣 − 𝑞 ≤ 𝛽 < 𝑣, we apply the same argu-

ment as in Case 1, and obtain that 

𝑡 = 𝛼′⨀𝑖⨁𝛽′⨀𝑗, 
where  

𝛼′ = (𝛼 − (𝑝 − 𝑢)) < 𝛼 and 

𝛽′ = (𝛽 − (𝑣 − 𝑞)) < 𝛽 < 𝑣. 

Next, let 𝛽 < 𝑣 − 𝑞 < 𝑣. Тhen 𝛽 + 𝑞 < 𝑣 ≤ 𝑛, and   

(𝛼 ⊝ 𝑝)⨀𝑖⨁(𝛽⨁𝑞)⨀𝑗 

= (𝛼 − 𝑝)⨀𝑖⨁(𝛽 + 𝑞)⨀𝑗 

= 𝛼⨀𝑖 ⊝ 𝑝⨀𝑖⨁𝛽⨀𝑗⨁𝑞⨀𝑗 

= 𝛼⨀𝑖⨁𝛽⨀𝑗 = 𝑡 = 𝛼′⨀𝑖⨁𝛽′⨀𝑗, 
where  

𝛼′ = (𝛼 − 𝑝) < 𝛼  and 𝛽 < 𝛽′ = (𝛽 + 𝑞) < 𝑣. 
In both cases, if (𝛼′, 𝛽′) ∈ 𝐴𝐿 ∪ 𝐴𝑅, then 𝑡 ∈ 𝐾.   
Let (𝛼′, 𝛽′) ∉ 𝐴𝐿 ∪ 𝐴𝑅. If (𝛼′, 𝛽′)  is in Case 1, we 

obtain that 𝑡 ∈ 𝐾. If (𝛼′, 𝛽′)  is not in Case 1, then it 

is in Case 2, and we repeat the same discussion as 

above. After finitely many repetitions of the above 

discussion we will obtain that 𝑡 ∈ 𝐾.   
Case 3. 𝛼 < 𝑝, 𝛽 ≥ 𝑣. 

This case is symmetric to the Case 2. 

Case 4. 𝛼 ≥ 𝑝, 𝛽 ≥ 𝑣.  
By the same discussion as in Case 1, we ob-

tain that 𝑡 = 𝛼′⨀𝑖⨁𝛽′⨀𝑗, where  

𝛼′ = (𝛼 − (𝑝 − 𝑢)) < 𝛼  and 

𝛽′ = (𝛽 − (𝑣 − 𝑞)) < 𝛽. 

If (𝛼′, 𝛽′) ∈ 𝐴𝐿 ∪ 𝐴𝑅 , then 𝑡 ∈ 𝐾. If (𝛼′, 𝛽′) ∉
𝐴𝐿 ∪ 𝐴𝑅, we apply again one of the previous cases, 

and after a finite number of such applications, we ob-

tain that 𝑡 ∈ 𝐾.   
The above discussion implies that ℤ𝑛 ⊆ 𝐾.  

Step 2. Let (𝛼, 𝛽) ∈ 𝐴𝑅 and (𝛼, 𝛽) ≠ (0,0). Then 

0 < 𝛼 + 𝑢 < 𝑝 and 0 < 𝑣 − 𝛽 < 𝑣 . This, together 

with the assumption that (𝑝, −𝑞), (𝑢, −𝑣) are mini-

mal consecutive pairs, implies that  
(𝛼 + 𝑢)⨀𝑖⨁(−(𝑣 − 𝛽))⨀𝑗 ≠ 0, i.e. 

 (𝛼 + 𝑢)⨀𝑖⨁(𝛽 − 𝑣)⨀𝑗 ≠ 0. 
Since  𝑢⨀𝑖⨁(−𝑣)⨀𝑗 = 0, we obtain that  

𝛼⨀𝑖⨁𝛽⨀𝑗 ≠ 0. 
Similarly, if (𝛼, 𝛽) ∈ 𝐴𝐿  and (𝛼, 𝛽) ≠ (0,0), then  

𝛼⨀𝑖⨁𝛽⨀𝑗 ≠ 0. 
We have shown that for (𝛼, 𝛽) ∈ 𝐴𝐿 ∪ 𝐴𝑅,  

𝛼⨀𝑖⨁𝛽⨀𝑗 = 0 ⇒ (𝛼, 𝛽) = (0,0). 
Step 3. Let (𝛼1, 𝛽1), (𝛼2, 𝛽2) ∈ 𝐾 such that  

𝛼1⨀𝑖⨁𝛽1⨀𝑗 = 𝛼2⨀𝑖⨁𝛽2⨀𝑗, i.е. 

(𝛼1 ⊝ 𝛼2)⨀𝑖⨁(𝛽1 ⊝ 𝛽2)⨀𝑗 = 0. 
The conclusion of Step 2 implies that 

𝛼1 ⊝ 𝛼2 = 0 and 𝛽1 ⊝ 𝛽2 = 0, 

and since 𝛼1, 𝛼2, 𝛽1, 𝛽2 < 𝑛 it follows that 

(𝛼1, 𝛽1) = (𝛼2, 𝛽2). 

Thus, 𝐾 ⊆ ℤ𝑛. This, together with Step 1, implies 

that 𝐾 = ℤ𝑛. 

A simple calculation implies that  

𝑛 = |𝐾| = |𝐴𝐿 ∪ 𝐴𝑅| = 𝑝𝑣 − 𝑞𝑢 . ■ 

Next, for 𝐺 = [𝑛; {𝑖, 𝑗}; {𝑏𝑖, 𝑏𝑗], 𝑥 = 𝑏𝑖𝑛 + 𝑖 

and 𝑦 = 𝑏𝑗𝑛 + 𝑗, let: 

- 𝑝 be the smallest positive integer such that 

𝑝𝑥 > (𝑝⨀𝑖⨀𝑗−1)𝑦, and  

- 𝑣 be the smallest positive integer such that 

𝑣𝑦 > (𝑣⨀𝑗⨀𝑖−1)𝑥.  
A simple calculation implies that the pairs  

(𝑝, −𝑝⨀𝑖⨀𝑗−1) and (𝑣⨀𝑗⨀𝑖−1, −𝑣) 

satisfy the condition of Lemma 4.2. Thus,  

𝒜 = {𝑠𝑥 + 𝑟𝑦|(𝑠, 𝑟) ∈ 𝐴𝐿 ∪ 𝐴𝑅} and  

𝐹(𝐺) = (𝑝 − 1)𝑥 + (𝑣 − 1)𝑦 

− 𝑚𝑖𝑛{ (𝑣⨀𝑗⨀𝑖−1)𝑥, (𝑝⨀𝑖⨀𝑗−1)𝑦} − 𝑛. 
For a real number 𝑥, let [𝑥] be the integer part 

of 𝑥, i.e. let [𝑥] be the biggest integer smaller or equal 

than 𝑥, and let  

⌈𝑥⌉ = {
[𝑥] + 1, 𝑥 ∉ ℤ  
[𝑥],                 𝑥 ∈ ℤ .

  

To find all the minimal pairs we start with the 

minimal pairs (𝑛, 0) and (𝑗⨀𝑖−1, −1). The next min-

imal pair is (⌈
𝑛

𝑗⨀𝑖−1⌉ (𝑗⨀𝑖−1) − 𝑛, − ⌈
𝑛

𝑗⨀𝑖−1⌉). If 

(𝑝, −𝑞) and (𝑢, −𝑣) are two consecutive minimal 

pairs such that 𝑢 ≠ 0, then the next minimal pair is 

(⌈
𝑝

𝑢
⌉ 𝑢 − 𝑝, −(⌈

𝑝

𝑢
⌉ 𝑣 − 𝑞)). 

With the above discussion we proved the fol-

lowing theorem. 
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Theorem 4.3. Let 𝐺 = 〈𝑛, 𝑥, 𝑦〉 be a numerical semi-

group with 𝑒𝑑(𝐺) = 3. Then: 

(i) There are unique 𝑝, 𝑞, 𝑢, 𝑣 ∈ ℕ obtained by the 

procedure given above, such that: 

𝑝𝑥 ≡ 𝑞𝑦(𝑚𝑜𝑑 𝑛), 𝑣𝑦 ≡ 𝑢𝑥(𝑚𝑜𝑑 𝑛), 

𝑝𝑥 > 𝑞𝑦 and 𝑣𝑦 > 𝑢𝑥; 

(ii) The Frobenius number 𝐹(𝐺) of 𝐺 is 

𝑝𝑥 + 𝑣𝑦 −
𝑢𝑥 + 𝑞𝑦 − |𝑢𝑥 − 𝑞𝑦|

2
− 𝑛 − 𝑥 − 𝑦. ∎ 
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АДИТИВНИ ПОЛУГРУПИ ОД ЦЕЛИ БРОЕВИ. 

ДИМЕНЗИЈА НА НУМЕРИЧКИ ПОЛУГРУПИ  

 

Виолета Анѓелкоска, Дончо Димовски  

 

Факултет за информатика, Универзитет ФОН, Скопје, Република Северна Македонија 

Македонска академија на науките и уметностите, Скопје , Република Северна Македонија 

 
Во овој труд дадена e карактеризација на димензијата на нумеричките полугрупи од аспект на структурата 

на адитивните полугрупи од цели броеви дадена во [1]. Дадена е експлицитна формула за Фробениусовиот број 

𝐹(𝐺) кога димензијата на нумеричката полугрупа 𝐺 е помала или еднаква на 3.  
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