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We characterize the embedding dimension of numerical semigroups in the same manner as additive semigroups
of integers are characterized in [1]. Moreover, we give a particular characterization of the Frobenius number of numerical
semigroups with embedding dimension less than or equal to 3.
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INTRODUCTION

This paper has been motivated by the results
about the structure of additive semigroups of integers
(Dimovski, [1]), geometric description of finitely
generated subsemigroups of the additive semigroup
N (Dimovski and Hadzi - Kosta Josifovska, [2]) and
the description of finitely generated  additive
subgroups of Z" (Hadzi - Kosta Josifovska and
Dimovski, [3]).

The main results stated in these papers are the

following:
Theorem 1.1. (Theorem 1.2. in [1]) Let G be a semi-
group consisting of positive integers. Let n be the
smallest integer in G, d the greatest common divisor
of the elements of G and n = kd. Let us denote by A;
the set of all the elements in G whose remainder after
division by n is id, i.e.

A; ={ala€G,a=nt+id,t € N}
Then:
()G =AyUA; U ...UAg_q, the union is disjoint.
(ii) There exist 1 = aq, a4, ..., Qx—1, such that
A; = {tn + ldlt = ai} and
i+j<k
i+j=>k.

Qi j)
a; + aj > { o -1
al+]—k )

(il)) If m; = a;n + id, then {n = my, mq, ..., my_1}
is a set of generators for G.
(iv) Let

b = max{ay, ay, ..., Ax_1}
s =max{ila; =b}andc = (b -1k +s+ 1.
Then

(c—1dé¢Gand {td|t =c} =G, SG.

(We say that G, is the regular part of G.)
Theorem 1.2. (Theorem 2.1. in [1]) Let a be a con-
gruence on G and a # 4, (4; is the equality on G).
Then there exist m, sy, sy, ..., Sx—1 € N such that:
(i) aab = mla — b.
(if) (Vt € Ny) [(s; + t)n + id]* is an infinite class,
and, for everyv € 4;, v < s;n + id = v% is a finite
classfor0 <i<k-—1.
(iii) The integers s; satisfy the following conditions:

siZal-,
S-+a.>{5i+j’ l+]<k
t ]_Si+j—k_1l l+]2k

Theorem 1.3. (Theorem 2.1. in [2]) An additive sub-
semigroup G of N™ for n > 1 is finitely generated if
and only if G is a subset of Cone(A) for some subset
AofG.

Theorem 1.3. shows the major difference be-
tween the structure of additive subsemigroups of Z"
forn > 1 and additive subsemigroups of Z, since any
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additive subsemigroup of Z is finitely generated. For
better understanding of the additive subsemigroups
of Z™ a good description of the additive subgroups
of Z™ is given in [3].

Four years ago, we came across two papers
about numerical semigroups (Semigroup Forum, see
[4],[5]). We found out that they are in fact semi-
groups of nonnegative integers, whose greatest com-
mon divisor of their elements is 1.

Later, we found out that there are a lot of pa-
pers about numerical semigroups (see [6] - [13]), dis-
cussing the following notions: multiplicity, conduc-
tor, Frobenius number, embedding dimension, gaps,
genus, etc. and also theorems analogous to Theorem
1.1, but not to Theorem 1.2.

With the notions as in Theorem 1.1, when d =
1, G U {0} is a numerical semigroup, whose multi-
plicity is n, conductor is c, the gaps are all the num-
bers tn + i, for t < a;, the genus is X7 a; and the
Frobenius number is ¢ — 1.

The notion of embedding dimension is not
considered in [1]. The aim of this paper is to charac-
terize the embedding dimension of numerical semi-
groups in the same manner as additive semigroups of
integers are characterized in [1]. Moreover, using this
characterization, we obtain an explicit form for the
Frobenius number of numerical semigroups with em-
bedding dimension less than or equal to 3.

Further on, instead of the term additive semi-
groups of nonnegative integers, we use the term nu-
merical semigroups. Thus, a numerical semigroup G
is a proper nonempty subset of Ny, closed under ad-
dition, containing 0 and whose complement is finite,
i.e. Ng\G is finite. We say that a set

S={ny,ny ...} EN
is a set of generators for G, denoted by G =< S >, if
the elements of G are linear combinations of
nq, Ny, ..., Ny With nonnegative integer coefficients.

The condition (iii) in Theorem 1.1. implies that
every numerical semigroup has a finite set of genera-
tors. Moreover, it has a unique minimal set of gener-
ators ([4]). The cardinality of the minimal set of gen-
erators for G is called embedding dimension of G, de-
noted by ed(G). The smallest number in the minimal
set of generators is called multiplicity of G, denoted
by n. The largest number not belonging to a numeri-
cal semigroup G is called Frobenius number of G, de-
noted by F(G). The set Ny\G is known as the set of
gaps of G. Its cardinality is called genus of G, denoted
by g(G).

In this paper a numerical semigroup G will be
denoted by G = [n, A], where n is the multiplicity of
G and

A={1=ayaq,...,0p_1}

where ay, a4, ..., a,_q areasin Theorem 1.1.
SOME PRELIMINARY NOTIONS
AND RESULTS

The addition of integers modulo n will be de-
noted by @ and the additive group of integers modulo
n will be denoted by (Z,, ®). If X € Z,, the sub-
group of (Z,, ®) generated by X will be denoted by
< X >. The subtraction of integers modulo n will be
denoted by ©. The multiplication of integers modulo
n will be denoted by ®. For i4,...,ix € Z, and k €
N, the integer part [T] will be denoted by

[n; il""'ik]’ i.e.
_ ) i1+ ... +ig
[ iq,..., 0] = [T]
Lemma 2.4. Letn, k,t €N, iy, j, EZ,for1 <u <
k,1<v<t j=i;®...@i and s = j;®... Dj,.
Then:

it et — 4 ® ... D0,
(l) [n;llﬂ"'ﬂlk]: ! n ! H
(“) [Tl; ilf""ikfjll"'ljt]

= [n;jﬂjll"'th] + [n;ill"'lik];

(DN LR I PR A
= [n;j,s]+ [min,..., ] + [ 10 jel;
(iv) [n; ] = 0.

Proof. (i) Since j = i; ... @iy, it follows that
i1+...+i, =tn+jforsomet € N.

Thus,
it ... iy 4 ... 4 —
_ [ n ] ‘ n '
i.e.
_ it — @ .. B,
[n;iq,..., 0] = .

n
(if) Using (i) we obtain
. [n;.jﬁjll"'ljt] + [n; ill:"lik] . )
_Jthat e e = j®s it i —

1+...+ig +?1+ ..t — jOs
B n
=M ig,..s i fire-orjel-
(iii) Follows from (ii).
(iv) Follows from (i).
Applying Lemma 2.4, the condition (ii) in The-
orem 1.1 can be written as
Aigj < a; + a; + [n; l,]]
Lemma 2.5. LetG = [n;{ap =1,a4,...,a,_1}] be
anumerical semigroup. Then for arbitrary iy, ..., i €
Zy, k € N we have that
ai.®..®i < al-1+ cen +aik + [‘l’l; I, ik]-
Proof. The proof is by induction on k. It is easily seen
that the inequality holds for k = 1. Namely, a;, =
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a;,. The condition (ii) in Theorem 1.1 implies that the
inequality holds for k = 2.
Assume that
ail@m@ik < ai1+. . +aik + [Tl; il! ey lk]
The condition (ii) in Theorem 1.1, the inductive hy-
pothesis and Lemma 2.4 imply that
;0. ik Birss = iy @. @i T Aigy,
+[n; 1. iy, igs1] < +...+a;, +a;,
i, i) + [0 4D .. Biy, i y1]
=a;+...ta, tag,  + i i i) e
For a numerical semigroup
G=[n{ay=1,a4..
we define the following sets:
R(G) = {i®jli,j € Zn, aipj = a; + a; + [n; 1,1}
and S(G) = Z,\R(G).
Lemma 2.6. 0 € S(G).
Proof. Since ay,a4,...,a,_1 € N, it follows that
ap=1<a;+a;+[n;i,j]foralli,j € Z,.m

o an_1}]

EMBEDING DIMENSION
OF NUMERICAL SEMIGROUPS

We will give a characterization of the embed-
ding dimension of numerical semigroups in the same
manner as a characterization of the additive semi-
groups of integers was given in [1].

Let G =[n;{ap =1,a4,...,a,_1}] be a nu-
merical semigroup, B, = {a;n + i|i € Z,;} and

M,y = {an +ili € R(G)}.

From the definition of B, and M, it follows that
|Bo\Mo| = |Z,\R(G)| = |S(G)I.
Theorem 3.1. The set By\M, is the minimal set of

generators for G. Thus,
ed(G) = |Bo\Mo| = |S(G)I.
Proof. We will consider the following four steps.
Step 1. If R(G) = @ then M, = @. We will show that
B, is the minimal set of generators for G by contra-
diction.
Assume that, for some i € Z,\{0},
ant+i=aqn+i+--+a,n+i,
where k > 2 and a; n + i; € Bo\{a;n + i} for each
s€{l,...,k}. Then
an+i=(a;+...+a )n+ig+...+i
= (a,+...ta )n+ [n;iy,..., ik In+ i;D... Diy
= (a,+...ta;, + [nig,..., ik Dn + i1 ©... Biy.
This impliesthati = i;®...®i, and
a; = ailea___@ik = Cli1+ s +al-k + [Tl; il! ey lk]
Letj = i,®...®i, and assume that
a; = ailij < al-l + a; + [Tl; ll,]]
By Lemma 2.5 we have that
ai1+ s +aik + [Tl; il, ey lk] = ail@___@ik
<agt...ta, + 0. il

Next, the assumption and Lemma 2.5 imply that:
aip, +...ta, + iy, 0] <ap +a;+ [0, )]
<ay ta,...ta; i ] + [0 )]

This implies that

[ iq,.. i) < ig,..., ikl + [ ig, ],
contrary to Lemma 2.4 (ii).

Hence, a; = a;, + a; + [n;iy,j]. So i € R(G), con-
trary to R(G) = @. Therefore, B, is the minimal set
of generators for G.
Step 2. Let R(G) # @ and x; be the largest element
in By such that x; = a; n+t; and ¢; € R(G). This
implies that t; = i®j for some i,j € Z, and
ai@j =a; + aj + [TL; l,]]

Thus,

x1 = (a; + aj + [n;i,jDn + i®j

=aqn+an+[n;i,jln +i®j

=agnt+an+it+j=u+v,
where u = a;n +iand v = ajn + j. Since u,v > 0,
it follows that x; # u and x; # v. Therefore,

X1 € < By\{x1} >, i.e.
< B; > =< By, >= G, where B; = By\{x;}-
If R(G)\{t1} = 0, the same discussion as in Step 1,
implies that B; is the minimal set of generators for G.
Step 3. We continue by induction to obtain the ele-
ments
ty,...,tr ER(G), x1 > x5, >...> x, € By
and B, € B,_; €...C By € By, such that
Xs = az n+ ts and By = Bg_;\{x},

foreverys € {1,...,r}.

If R(G)\{ty,...,t,} = @, the same discussion
as in Step 1, implies that B, is the minimal set of gen-
erators for G. If R(G)\{ty,...,t,.} # O, let x,,, be
the largest element in B, such that x,,; = a;n+t
for some t € R(G)\{ty,...,t-}. This implies that
Xp > Xppq and ap = aj9; = a; + a; + [n;4,j] for
somei,j € Zy.

Thus,

Xrp1 = (a; + aj + [0, j)n + iDj
=aqn+an+[n;ijn+i®j
=ant+an+i+j=u+tv,

whereu =gn+iandv = ajn+j. Fromu,v >0,
we have that x,.,; # v and x,,; # V.

Since x; > x, >...> x, > x,4q, it follows
that u, v € Bo\{xy,...,X,41}, 1.€.

Xr41 € < Briq > =< B \{xr41} >

Hence,

<Byy1 >=<B,>=...=<B; >=<By >=0G.
Step 4. This procedure has to stop, since R(G) has a
finite number of elements, i.e. there is some t,,, such
that R(G)\{t4,...,t;n} = @. The same discussion as
in Step 1 implies that By, is the minimal set of gener-
ators for G. Since
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|Bm| = [Bo\{x1, .-, xm}| = |Bo\Mo| = [S(G),
we have
ed(G) = |Bo\Mo| = |S(G)|.m

Let n be a given positive integer. Let T <
Z,\{0} be a generating set for Z,, i.e. <T >=17Z,
and let B(T) = {bg|s € T} < N satisfies the follow-
ing condition:

ifteTandt = i1®...®i, foriy,..., i, € T\{t},
then bt < bi1+' . +bir + [n; il' . lr] (1)
We define aset P = {ay,ay,...,a,_41} as follows:
(N ap =1,
(i) If i €T, thena; = b;;
(i) If i € T, then
a; =min{b; +...+b; +[n;iy,...,0,][i =
iL®...®iy,iy,...,i €T}

By the definition of the set P it follows that for
eachi € Z,\{0}, there ist € N and some iy,...,i; €
T such that

a; = bi1+ "'+bit + [Tl; il)"')it]v
where i =i;®...Di,. 2
Theorem 3.2. With the above notions, we have:
(i) G = [n; P] is a numerical semigroup, denoted by
[n; T; B(T)].
(ii) R([n; T; B(T)]) = Z,\(T U {0).
(iii)y ed([m; T; B(T)]) = |T| + 1.
Proof.
(i) By (2) it follows that
a; = bi1+ "'+bir + [n; il""'ir]v
Clj = bj1+ "'+bjt + [Tl;jl,...,jt],
where i = i;®...®i, and j = j;®...®j, for some
r,t €N,
If i@®j € T then
ai@j = bi@j < bi1+ +bl'r + b]1+ +b]t
S L TR PUNE S A A
where i®j = i;®... Di, D), D... Dj,.
If i®j ¢ T then
ai@j = mm{ bi1+ s +bik + [Tl; il! .
= i1®...®ik,i1,...,ik € T}
< by, +...+b; +bj +...+bj,
+[n; iy, .. il
In both cases, we have
ai@j < bi1+ "'+bir + bj1+ "'+bjt
o (R S VR ey SU |
=a;—[miy,.... 0] +a —[nj1,.... )]
e (R PV A A A
=a;+a;—[niy,.... 0]+ [nig,..., 0]
=a;+a;+[nij],

ik ]i®)

b J1 e

i.e.

Aigj <a;+ a; + [Tl; l,]]
Thus, aq,a4,...,a,_, satisfy the condition (ii) in
Theorem 1.1 and G = [n, P] is a numerical semi-
group.

(i) Lett € R(G). Thent = i®jand a; = a; + a; +
[n; i, j], where

a; = bi1+ "'+bir + [Tl; il,...,ir],

aj = b]1+ +b]k + [Tl;jl,...,jk],

i=i;®...0i,andj = j;D... Djy,
forr, k € N.
If t € T then

by +...+b; +bj+...+b;,
+[Tl; ill"'lirljl""'jk]
> aigj =ar =a; +a; + [n;0,]]
=by+...+tb +[niy,..., 0]
+bj1+ "'+bjk + [n;jl!"'ljk] + [Tl; i’j]a
which implies that
i, i ]+ [ k]

+H[m L jl < [Min - imjir--jils
contrary to Lemma 2.4. So t ¢ T. This shows that
R(G) € Z,\T.
Fort =0,

ap=1<a; +a;j+[n;i,j]foralli,j € Z,, ie.
t € Z,\(T v {0}). Hence, R(G) < Z,\(T U{0}).
Let t € Z,\(T U {0}). Since t ¢ T U {0}, it follows
that there are i;,...,i, € T and r € N such that
t=i,®...®i,
and
ar = aileam@ir = bi1+ "'+bir + [Tl; il!"'!ir]
=a;+...ta; +[niy,.. 0]

Letj =i,®...®i,. Then
ar = ay, ta,+...ta; +[niy,jl+[niy..., 0]

> ail + a; + [Tl; il,j] = ailij = Q¢.
Hence a; = a;, + a; + [n; iy, j], which implies that
t € R(G). This completes the proof, i.e.

R(G) = Z,\(T U {0}).

(iii) Follows from (i) and (ii).

By all these results we obtain the following theorem:
Theorem 3.3. A numerical semigroup G has
ed(G) =d iff G = [n;T; B(T)] for some: positive
integer n; T € Z,\{0} such that < T >=Z, and
IT| =d —1; and some B(T) < N, that satisfies the
condition (1).

FROBENIUS NUMBER
OFNUMERICAL SEMIGROUPS

The Frobenius number F(G) of a numerical
semigroup G is the largest integer not belonging to G.
In fact, F(G) is the largest integer such that the linear
equation myx;+...+m,x, = F(G) does not have
any non-negative integer solution, where

{my,...,m}
is the minimal set of generators for G.
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It is shown that if G =<my,m, > and
GCD(mq4,m,) =1, then F(G) = mym, —m; —m,
([6D).

The question of finding a general formula for
the Frobenius number, in terms of the minimal set of
generators for G when ed(G) = 3, turned out to be
much more difficult to answer.

F. Curtis has proved in [10] that Frobenius
number cannot be given by “closed” formulas of a
certain type when ed(G) = 3.

Several authors have developed algorithms
that compute the Frobenius number of numerical
semigroups with embedding dimension 3. The first is
Johnson ([15]). Redseth developed an algorithm us-
ing continued fractions ([14]). The algorithm by Da-
vison ([16]) is the fastest known algorithm for com-
puting the Frobenius number for ed (G) = 3, accord-
ing to Beihoffer, Nijenhuis and Wagon ([17]).

Recently, an explicit general formula for com-
puting F(G) for ed(G) = 3, was given by Denham
in [18] and Tripathi in [19].

When ed(G) > 3, the Frobenius number has
been exactly determined only for few special cases
([14D).

A variety of algorithms for computing the Fro-
benius number for ed(G) > 3, as well as upper
bounds and lower bounds, are quite well elaborated
in [14].

By Theorem 1.1, the Frobenius number of G =
[n, A] is

F(G)=an+ k —n,
where
a =max{ay,...,a,_1}and k = max{ila; = a}.
This is the simplest general form for the Frobenius
number.

In continuation, we give a particular character-
ization of the Frobenius number of numerical semi-
groups with embedding dimension less than or equal
to 3, in terms of its minimal set of generators.

LetG =[m;T; B(T)], T = {j1,---,Jjr}
A ={asn+s|se€Z,} and
M={bn+jlr=1,..,k}ie
M ={my,...,my}.
We define ¢: Z¥ - 7, by
©(z4,...,2,) =t iff Y&, zom, =t (modn).

It is easy to check that the map ¢ is a homomorphism
and H = ker ¢ is an additive subgroup of Z* of rank
k. LetB® = Hn (Ny)*, B =B°{(0,...,0)}, D =
B + (Ng)* and € = (No)*\D. (We say that C is the
carrier of G).

Theorem 4.1. For each r € A\{0},

r =pymy+ ... +pmy for some (pq,...,px) € C.

Proof. Assume contrary that for some r € A\{0},
r=pm+...+pm and (pq,...,0x) € C. Then
Py, Pk) € B+ (No)”, iie.

@1 pk) = (155 1) + (G-

=+ qu. Tkt Qi)
where (ry,...,7,) € Band (qq,...,qx) € (No)k.
Since (ry,...,1,) € B it follows that
o(ry,..., 1) =0.

This implies that ¢ (p4, ..., k) = ¢(q4, --
the obvious inequality

pimyt . DMy > @yt gemy
contradicts the fact that r € A\{0}.m

Ifed(G)=1thenT =@and G =<n >.So,
n = 1 and the Frobenius number of G does not exist.

Leted(G) = 2,i.e. G = [n; {i}; {b;}], where

GCD(n,i) =1, x=bn+1i, M = {x}and

A ={an +s|s € Z,} = {mg|s € Z,}.

The definition of G implies that m,o; = tx, so the
Frobenius number of G = [n; {i}; {b;}] is
FGO)=n—-Dx—-—n=nx—x—n.

Leted(G) = 3,i.e. G = [n; {i,j}; {bs, b;}],

where
GCD(n,i) = GCD(n,j) =1,x = bin + i,
y =bn+j, M = {x,y}and

A ={an +s|s € Z,} = {mg|s € Z,}.
The definition of G implies that

ms = min{px + qy|pOi®qOj = s}.
If p’®i =q'®jand p'x > q'y, then

p'OIBqOj = q'Oj®q0j = (¢'+ O]
andp'x +qy > (q + q")y.
Similarly, for p'®i = q¢'®j and q'y > p'x,
q'OjdpOIi = p'OiGpOI = (p'+ p)OI
and q'y + px > (p + p)x.

If pOi = qOj, then p(p, —q) = 0, for the ho-
momorphism ¢:Z? - Z,,, i.e. (p,—q) € H. In order
to find min{px + qy}, the above discussion shows
that we have to have a good control on the pairs
(p,—q) € Hforp,q € Z,.

We say that a pair (p,—q) € H, for p,q € Z,,
is a minimal pair if there is no (p’,—q") € H, for
p'q' € Zy, such that p’ < p and g’ < q. We say that
two minimal pairs (p, —q), (u, —v) are consecutive
ifp>u, g<v and

0<c<p,0<d<v=> (c,—d) ¢ H.
We will prove the following lemma.
Lemma 4.2. Let (p, —q), (u, —v) be two minimal
consecutive pairs. Then pv — qu = n and
(sQI®rOj|(s,r) € A, U AR} = Z,,
where
A, ={(sn0<s<p0<r<v-—gq}
A ={(s,n)|0<s<p—-u0<r<uv}
Proof. Let
K = {sQi®rQj|(s,r) € A, U Ag}.

k)

. qr), and
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The proof is in three steps.
Step 1. The assumption GCD(n,i) = GCD(n,j) =1
implies that for every t € Z,, t = a®@i®LOj for
some (a,B8) e NxN. If (a,8) € A, U Ag, then t €
K. If (a,B) € A, U Ag, then we have to consider 4
cases: a <p, B <viazp, f<v,a<p, f =,
anda >p,f =>v.
Casel.a<p,B<vand(a,p) & AL UAg.
Since (a,B) ¢ A, itfollowsthatv — g < g <
v, and since (a,B) & Ag, it follows that p —u <
a<p.
Next, the assumptions p©i = q©®j and u@i = v®j
imply that
(@ © (@ Ouw)oIdB O (o q)0j
=(a—(p-w)OiBB - (v-9)0j
= a0i O pOIBUOIDLO) O vOjBqO)
= a@I®LOj =t = a'OQiBL'OJ,
where
a'=(a—(p-u)<a<p and
B=B-w-q9)<B<w
If (a’,B) €A, UAg, thent € K. If (a',B") ¢
A; U Ap, then we repeat the discussion above. After
finitely many repetitions we will obtain that t € K.
Case2.a=p, B <wv.
If v—q <pB <wv, we apply the same argu-
ment as in Case 1, and obtain that
t =a'QiPL'oj,
where
a'=(a—(p-u)<aand
B=B-w-9)<p<v.
Next, let 8 <v—q <v.Then 8 +q < v <n,and
(@ © p)OIBPBDYO)
= (a = p)OIB(B + q)Oj
= a@®i O pOIBLOjBqO)
= aQI®LOj =t = a'QiBL'OJ,
where
a=(a—-p)<aandp<pB'=P+q <v.
In both cases, if (a’,") € A, U Ag, thent € K.
Let (a",B) & AL U Ag. If (a',B") isin Case 1, we
obtain that t € K. If (a’,8") is not in Case 1, then it
is in Case 2, and we repeat the same discussion as
above. After finitely many repetitions of the above
discussion we will obtain that t € K.
Case3.a<p, B =v.
This case is symmetric to the Case 2.
Cased.a=p,f =v.
By the same discussion as in Case 1, we ob-
tain that t = a'@iBL'®j, where
a' = (a— (p—u)) < a and
B'=(B-w-q)<B
If (a',B) €A, UAg thent €K.If (a',p") ¢
A; U Ag, we apply again one of the previous cases,

and after a finite number of such applications, we ob-
tainthat t € K.
The above discussion implies that Z,, € K.
Step 2. Let (a,B) € Ag and (a,B) # (0,0). Then
O0<a+u<pand 0<v-—p <wv . This, together
with the assumption that (p, —q), (u, —v) are mini-
mal consecutive pairs, implies that
(@ +WOIB(—(w—-B)Oj #0,i.e.
(a+wW)OIBPL —v)Oj # 0.
Since uiB(—v)®j = 0, we obtain that
a®idpOj # 0.
Similarly, if (a, ) € A, and (a, ) # (0,0), then
aQi®LO;j # 0.
We have shown that for (a, 8) € A, U Ag,
a@i®pOj =0 = (a,8) = (0,0).
Step 3. Let (a4, B1), (a3, B2) € K such that
a;QiBS10) = a,OiBB0), i.e.
(a1 © a2)OID (B O B2)O) = 0.
The conclusion of Step 2 implies that
a,Oa,=0and B, © B, =0,
and since a4, a5, 81, B, < n it follows that
(a1, 1) = (a2, B2)-
Thus, K € Z,. This, together with Step 1, implies
that K = Z,.
A simple calculation implies that
n=|K|=|ALUAg|=pv—qu.m
Next, for G =[n;{i,j};{b;bj], x =bn+i
andy = bjn +j, let.
- p be the smallest positive integer such that
px > (p®iOj 1)y, and
- v be the smallest positive integer such that
vy > (v@j@i Hx.
A simple calculation implies that the pairs
(p, —pOIOj ) and (vO;OI~, —v)
satisfy the condition of Lemma 4.2. Thus,
A ={sx+ry|(s,v) € A, U Ag} and
F(G)=®—-Dx+ -1y
—min{ (WOjOI Mx, (pOIO; "y} — n.
For a real number x, let [x] be the integer part
of x, i.e. let [x] be the biggest integer smaller or equal

than x, and let
_([x]+1, x¢Z
Il = {[x], x€T.

To find all the minimal pairs we start with the
minimal pairs (n, 0) and (j®i~t, —1). The next min-
- - - n . =1y _ n
imal pair is ([jOi‘l] (GOiI™) —n, [j@i‘ll)' If
(p,—q) and (u,—v) are two consecutive minimal
pairs such that u # 0, then the next minimal pair is

Elu-p-|v-an.

With the above discussion we proved the fol-
lowing theorem.
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Theorem 4.3. Let G = (n, x, y) be a numerical semi-
group with ed(G) = 3. Then:

(i) There are unique p,q,u,v € N obtained by the
procedure given above, such that:

px = qy(mod n), vy = ux(mod n),
px > qy and vy > ux;
(i) The Frobenius number F(G) of G is
ux +qy — |lux — qy|

+ —_ —_
px + vy > n

—x—y.n
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AJUTUBHU NNOJYT'PYIIN O INEJIM BPOEBMU.
JANMEH3UJA HA HYMEPUYKHU ITOJIYT'PYIIN

Buonera Anrfenkocka, Jlonuo JumoBckn

®akynret 3a nHPopmatrka, Yausep3urer DOH, Ckomje, Perrybnuka Ceepna Makenonuja
MakeioHCKa akajieMHja Ha HaykuTe U ymetHoctute, Ckomje , Perry6nuka CeBepna Makenonuja

Bo 0Boj Tpyn nazeHa € kapakTepu3anyja Ha IMMEH31jaTa Ha HyMEPHUYKHUTE MOJIYTPYIH O] aCIeKT Ha CTPYKTypaTa
Ha aJJUTUBHUTE MOJIYTPYIH O] 1ienu OpoeBu AajeHa Bo [1]. Janena e ekcrmnuuTHa opmyia 32 @poOeHnyCOBHOT Opoj
F(G) xora quMeH3ujara Ha HyMepHUKaTa monyrpyna G e nomala Hin eJHaKBa Ha 3.

Kayunu 300poBH: HyMEpUUKH MOJNYTpyIH; quMeH3mja; ®podbeHunycos 6poj

Ipunosu, Ogg. ipup. maiu. buoidex. nayku, MAHY, 41 (1), 49-55 (2020)



